We propose a non-intrusive, reduced-basis, and data-driven method for approximating both eigenvalues and eigenvectors in parametric eigenvalue problems. We generate the basis of the reduced space by applying the proper orthogonal decomposition (POD) approach on a collection of pre-computed, full-order snapshots at a chosen set of parameters. Then, we use Bayesian linear regression (a.k.a. Gaussian Process Regression) in the online phase to predict both eigenvalues and eigenvectors at new parameters. A split of the data generated in the offline phase into training and test data sets is utilized in the numerical experiments following standard practices in the field of supervised machine learning. Furthermore, we discuss the connection between Gaussian Process Regression and spline methods, and compare the performance of GPR method against linear and cubic spline methods. We show that GPR outperforms other methods for functions with a certain regularity. To this end, we discuss various different covariance functions which influence the performance of GPR. The proposed method is shown to be accurate and efficient for the approximation of multiple 1D and 2D affine and non-affine parameter-dependent eigenvalue problems that exhibit crossing of eigenvalues.


翻译:我们提出了一种非侵入式、减少基础和数据驱动的方法,用于近似参数特征值问题中的特征值和特征向量。我们使用适当的正交分解(POD)方法在一组选择的参数上预先计算的完整快照集上生成缩减空间的基础。然后,我们在在线阶段使用贝叶斯线性回归(即高斯过程回归)来预测新参数下的特征值和特征向量。采用离线阶段生成的数据拆分为训练和测试数据集,遵循监督机器学习领域的标准实践。此外,我们还讨论了高斯过程回归与样条方法之间的联系,并比较了GPR方法与线性和三次样条方法的性能。我们展示了在特定规则性的函数中,GPR方法优于其他方法。为此,我们讨论了各种不同的协方差函数,这些函数影响了GPR的性能。所提出的方法被证明对于表现出特征值交叉的多个1D和2D仿射和非仿射参数依赖特征值问题的近似是准确和高效的。

0
下载
关闭预览

相关内容

高斯过程(Gaussian Process, GP)是概率论和数理统计中随机过程(stochastic process)的一种,是一系列服从正态分布的随机变量(random variable)在一指数集(index set)内的组合。 高斯过程中任意随机变量的线性组合都服从正态分布,每个有限维分布都是联合正态分布,且其本身在连续指数集上的概率密度函数即是所有随机变量的高斯测度,因此被视为联合正态分布的无限维广义延伸。高斯过程由其数学期望和协方差函数完全决定,并继承了正态分布的诸多性质
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
67+阅读 · 2022年9月30日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
专知会员服务
50+阅读 · 2020年12月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月19日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员