Free space ground segmentation is essential to navigate robots and autonomous vehicles, recognize drivable zones, and traverse efficiently. Fine-grained features remain challenging for existing segmentation models, particularly for robots in indoor and structured environments. These difficulties arise from ineffective multi-scale processing, suboptimal boundary refinement, and limited feature representation. In order to overcome these limitations, we propose Attention-Guided Upsampling with Residual Boundary-Assistive Refinement (AURASeg), a ground-plane semantic segmentation model that maintains high segmentation accuracy while improving border precision. Our method uses CSP-Darknet backbone by adding a Residual Border Refinement Module (RBRM) for accurate edge delineation and an Attention Progressive Upsampling Decoder (APUD) for strong feature integration. We also incorporate a lightweight Atrous Spatial Pyramid Pooling (ASPP-Lite) module to ensure multi-scale context extraction without compromising real-time performance. The proposed model beats benchmark segmentation architectures in mIoU and F1 metrics when tested on the Ground Mobile Robot Perception (GMRP) Dataset and a custom Gazebo indoor dataset. Our approach achieves an improvement in mean Intersection-over-Union (mIoU) of +1.26% and segmentation precision of +1.65% compared to state-of-the-art models. These results show that our technique is feasible for autonomous perception in both indoor and outdoor environments, enabling precise border refinement with minimal effect on inference speed.
翻译:暂无翻译