GPU-based HPC clusters are attracting more scientific application developers due to their extensive parallelism and energy efficiency. In order to achieve portability among a variety of multi/many core architectures, a popular choice for an application developer is to utilize directive-based parallel programming models, such as OpenMP. However, even with OpenMP, the developer must choose from among many strategies for exploiting a GPU or a CPU. Recently, Machine Learning (ML) approaches have brought significant advances in the optimizations of HPC applications. To this end, several ways have been proposed to represent application characteristics for ML models. However, the available techniques fail to capture features that are crucial for exposing parallelism. In this paper, we introduce a new graph-based program representation for parallel applications that extends the Abstract Syntax Tree to represent control and data flow information. The originality of this work lies in the addition of new edges exploiting the implicit ordering and parent-child relationships in ASTs, as well as the introduction of edge weights to account for loop and condition information. We evaluate our proposed representation by training a Graph Neural Network (GNN) to predict the runtime of an OpenMP code region across CPUs and GPUs. Various transformations utilizing collapse and data transfer between the CPU and GPU are used to construct the dataset. The predicted runtime of the model is used to determine which transformation provides the best performance. Results show that our approach is indeed effective and has normalized RMSE as low as 0.004 to at most 0.01 in its runtime predictions.


翻译:基于GPU的HPC集群因其广泛的并行性和能源效率而吸引了更多科学应用程序开发人员的关注。为了在各种多/多核架构之间实现良好的移植性,应用程序开发人员通常采用基于OpenMP的指令并行编程模型。但是,即使使用OpenMP,开发人员也必须从许多策略中选择利用GPU或CPU。最近,机器学习(ML)方法在优化HPC应用程序方面取得了重大进展。为此,已经提出了多种表示应用程序特征的ML模型。然而,现有技术无法捕捉关键的并行性特征。在本文中,我们引入了一种新的基于图的程序表示方法,以表示并行应用程序,它扩展了抽象语法树以表示控制和数据流信息。本文的创新之处在于在AST中添加新的边缘,利用了隐含的排序和父子关系,以及引入边缘权重以考虑循环和条件信息。我们通过训练图神经网络(GNN),以预测OpenMP代码区域在CPU和GPU上的运行时间来评估我们提出的表征。使用折叠和CPU和GPU之间的数据传输等各种变换来构建数据集。模型预测的运行时间用于确定哪种变换提供了最佳性能。结果表明,我们的方法确实是有效的,其运行时预测的归一化RMSE低至0.004,至多0.01。

0
下载
关闭预览

相关内容

【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
13+阅读 · 2019年11月14日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员