题目: Graph Embedding Techniques, Applications, and Performance: A Survey
摘要: 图形,如社交网络、单词共现网络和通信网络,自然地出现在各种实际应用中。通过对它们的分析,可以深入了解社会结构、语言和不同的交流模式。已经提出了许多方法来进行分析。近年来,在向量空间中使用图节点表示的方法受到了研究界的广泛关注。在这项调查中,我们对文献中提出的各种图嵌入技术进行了全面和结构化的分析。我们首先介绍了嵌入任务及其面临的挑战,如可伸缩性、维度的选择、要保留的特性以及可能的解决方案。然后,我们提出了基于因子分解法、随机游动和深度学习的三类方法,并举例说明了每类算法的代表性,分析了它们在不同任务中的性能。我们在一些常见的数据集上评估这些最新的方法,并将它们的性能进行比较。我们的分析最后提出了一些潜在的应用和未来的方向。
作者简介: Palash Goyal,南加州大学计算机系博士。
Emilio Ferrara,南加州大学计算机科学系助理研究教授和应用数据科学副主任,南加州大学信息科学研究所机器智能和数据科学(MINDS)小组的研究组长和首席研究员。