We employ neural networks to tackle inverse partial differential equations on discretized Riemann surfaces with boundary. To this end, we introduce the concept of a graph with boundary which models these surfaces in a natural way. Our method uses a message passing technique to keep track of an unknown differential operator while using neural ODE solvers through the method of lines to capture the evolution in time. As training data, we use noisy and incomplete observations of sheaves on graphs at various timestamps. The novelty of this approach is in working with manifolds with nontrivial topology and utilizing the data on the graph boundary through a teacher forcing technique. Despite the increasing interest in learning dynamical systems from finite observations, many current methods are limited in two general ways: first, they work with topologically trivial spaces, and second, they fail to handle the boundary data on the ground space in a systematic way. The present work is an attempt at addressing these limitations. We run experiments with synthetic data of linear and nonlinear diffusion systems on orientable surfaces with positive genus and boundary, and moreover, provide evidences for improvements upon the existing paradigms.
翻译:我们使用神经网络来解决分解的里曼表面有边界的反偏偏差方程。 为此, 我们引入了用边界图来模拟这些表面的自然模式的概念。 我们的方法使用电文传递技术来跟踪未知的差异操作者, 同时通过线条方法来跟踪演变过程。 作为培训数据, 我们在不同时间标记的图表上使用杂音和不完整的星仓观测。 这种方法的新颖之处是, 与带有非三角表层的多元体一起工作, 并通过教师强迫技术来利用图形边界数据。 尽管我们越来越有兴趣从有限的观测中学习动态系统, 但许多当前方法在两种一般方式上是有限的: 首先, 它们与表面的微小空间一起工作, 其次, 它们无法系统地处理地面空间的边界数据。 目前的工作是试图解决这些局限性。 我们用线性和非线性扩散系统的合成数据进行实验, 并且用正面的基因和边界的表面进行实验, 并且为改进现有的范式提供证据。