Spatial data can exhibit dependence structures more complicated than can be represented using models that rely on the traditional assumptions of stationarity and isotropy. Several statistical methods have been developed to relax these assumptions. One in particular, the "spatial deformation approach" defines a transformation from the geographic space in which data are observed, to a latent space in which stationarity and isotropy are assumed to hold. Taking inspiration from this class of models, we develop a new model for spatially dependent data observed on graphs. Our method implies an embedding of the graph into Euclidean space wherein the covariance can be modeled using traditional covariance functions such as those from the Mat\'{e}rn family. This is done via a class of graph metrics compatible with such covariance functions. By estimating the edge weights which underlie these metrics, we can recover the "intrinsic distance" between nodes of a graph. We compare our model to existing methods for spatially dependent graph data, primarily conditional autoregressive (CAR) models and their variants and illustrate the advantages our approach has over traditional methods. We fit our model and competitors to bird abundance data for several species in North Carolina. We find that our model fits the data best, and provides insight into the interaction between species-specific spatial distributions and geography.
翻译:空间数据可以显示依赖性结构的复杂程度, 而不是使用依靠传统的定点和偏移假设的模型来表示。 已经开发了几种统计方法来放松这些假设。 特别是, “ 空间变形方法” 定义了从观测数据的地理空间向一个潜在空间的转变, 即从观察数据的地理空间到假设的静止和异质的表面空间。 从这一类模型的灵感, 我们为在图表上观测的空间依赖性数据开发了一个新的模型。 我们的方法意味着将图形嵌入欧西里德空间, 从而使用传统的常态功能, 如Mat\\\ { { { { } 家族的函数, 来模拟共变异性。 这是通过与这种共变函数相兼容的图形测量尺度的一组图形空间空间空间空间空间空间空间空间空间空间空间空间空间空间。 我们通过估算这些模型的边际重量, 可以恢复图表节点之间的“ ” 。 我们的模型和现有空间依赖性图形数据, 主要是有条件的自动递增( CAR) 模型及其变方, 说明我们的方法优于传统方法的优势。 我们的模型和空间物种和竞争者在鸟类分布中找到了我们的最佳模型和空间数据。