This work studies the estimation of many statistical quantiles under differential privacy. More precisely, given a distribution and access to i.i.d. samples from it, we study the estimation of the inverse of its cumulative distribution function (the quantile function) at specific points. For instance, this task is of key importance in private data generation. We present two different approaches. The first one consists in privately estimating the empirical quantiles of the samples and using this result as an estimator of the quantiles of the distribution. In particular, we study the statistical properties of the recently published algorithm introduced by Kaplan et al. 2022 that privately estimates the quantiles recursively. The second approach is to use techniques of density estimation in order to uniformly estimate the quantile function on an interval. In particular, we show that there is a tradeoff between the two methods. When we want to estimate many quantiles, it is better to estimate the density rather than estimating the quantile function at specific points.
翻译:这项工作在不同的隐私下对许多统计量进行了估算。 更准确地说, 根据分布和访问 i. d. 样本, 我们研究特定点的累积分布函数( 量子函数) 的反向估计。 例如, 这项任务在私人数据生成中具有关键重要性。 我们提出两种不同的方法。 第一个方法是私下估计样本的经验量, 并使用这一结果作为分布量的估测器。 特别是, 我们研究最近公布的卡普兰等人( Kaplan et al. 2022) 采用的算法的统计特性, 该算法是私人对量子进行递归的估算。 第二种方法是使用密度估计技术, 以便统一估计一个间段的量函数。 特别是, 我们显示两种方法之间有一个权衡点。 当我们想估计许多孔时, 比较好的是估计密度, 而不是估计特定点的量函数 。