In this paper, we consider inference in the context of a factor model for tensor-valued time series. We study the consistency of the estimated common factors and loadings space when using estimators based on minimising quadratic loss functions. Building on the observation that such loss functions are adequate only if sufficiently many moments exist, we extend our results to the case of heavy-tailed distributions by considering estimators based on minimising the Huber loss function, which uses an $L_{1}$-norm weight on outliers. We show that such class of estimators is robust to the presence of heavy tails, even when only the second moment of the data exists.
翻译:本文中,我们考虑在张量时间序列的因子模型中进行推断。当使用基于最小化二次损失函数的估计器时,我们研究了估计的公共因子和载荷空间的一致性。基于这样的损失函数适用于存在足够多矩的观察,我们通过考虑基于最小化Huber损失函数的估计器来将我们的结果扩展到重尾分布的情况,后者使用$L_{1}$-范数的权重来处理异常值。我们表明,即使仅存在数据的二阶矩,这样的估计器类也能够对重尾存在表现出强健性。