We study the problem of estimating optical flow from event cameras. One important issue is how to build a high-quality event-flow dataset with accurate event values and flow labels. Previous datasets are created by either capturing real scenes by event cameras or synthesizing from images with pasted foreground objects. The former case can produce real event values but with calculated flow labels, which are sparse and inaccurate. The later case can generate dense flow labels but the interpolated events are prone to errors. In this work, we propose to render a physically correct event-flow dataset using computer graphics models. In particular, we first create indoor and outdoor 3D scenes by Blender with rich scene content variations. Second, diverse camera motions are included for the virtual capturing, producing images and accurate flow labels. Third, we render high-framerate videos between images for accurate events. The rendered dataset can adjust the density of events, based on which we further introduce an adaptive density module (ADM). Experiments show that our proposed dataset can facilitate event-flow learning, whereas previous approaches when trained on our dataset can improve their performances constantly by a relatively large margin. In addition, event-flow pipelines when equipped with our ADM can further improve performances.
翻译:我们研究了从事件相机估计光流的问题。一个重要的问题是如何构建一个高质量的事件光流数据集,其中有准确的事件值和光流标签。以往的数据集是通过使用事件相机捕捉真实场景或从图像中合成来创建的。前者可以生成真实的事件值,但光流标签是稀疏和不准确的。后者可以产生密集流标签,但插值的事件容易出现错误。在这项工作中,我们提出使用计算机图形模型渲染出一个物理正确的事件光流数据集。特别是,首先使用Blender创建室内和室外三维场景,并引入各种场景内容变化。其次,包括多样的相机运动进行虚拟捕捉,生成图像和准确的光流标签。第三,我们渲染图像之间高帧率的视频以获取准确的事件。渲染的数据集可以调整事件的密度,基于此,我们进一步引入了自适应密度模块(ADM)。实验证明,我们提出的数据集可以促进事件光流学习,而之前的方法在我们的数据集上训练时可以稳定地取得相对较大的性能提升。此外,当配备了我们的ADM时,事件光流流水线的性能也可以进一步提高。