We construct a reduced, data-driven, parameter dependent effective Stochastic Differential Equation (eSDE) for electric-field mediated colloidal crystallization using data obtained from Brownian Dynamics Simulations. We use Diffusion Maps (a manifold learning algorithm) to identify a set of useful latent observables. In this latent space we identify an eSDE using a deep learning architecture inspired by numerical stochastic integrators and compare it with the traditional Kramers-Moyal expansion estimation. We show that the obtained variables and the learned dynamics accurately encode the physics of the Brownian Dynamic Simulations. We further illustrate that our reduced model captures the dynamics of corresponding experimental data. Our dimension reduction/reduced model identification approach can be easily ported to a broad class of particle systems dynamics experiments/models.
翻译:我们利用从布朗动力模拟中获取的数据,为电场介质的冷晶化构建一个减少的、数据驱动的、依赖参数的有效蒸汽差异方程式。我们使用扩散图(一种多种学习算法)来确定一套有用的潜在观测数据。在这个潜伏空间,我们利用数字随机集成器所启发的深层学习结构来识别一个电子数据差异方程式,并将其与传统的克拉默斯-摩尔扩张估计值进行比较。我们显示,所获得的变量和所学的动态准确编码了布朗诺动力模拟的物理。我们进一步说明,我们减少的模型捕捉了相应实验数据的动态。我们的尺寸减少/减少模型识别方法很容易被移植到广泛的粒子系统动态实验/模型中。