Collective motion is an ubiquitous phenomenon in nature, inspiring engineers, physicists and mathematicians to develop mathematical models and bio-inspired designs. Collective motion at small to medium group sizes ($\sim$10-1000 individuals, also called the `mesoscale'), can show nontrivial features due to stochasticity. Therefore, characterizing both the deterministic and stochastic aspects of the dynamics is crucial in the study of mesoscale collective phenomena. Here, we use a physics-inspired, neural-network based approach to characterize the stochastic group dynamics of interacting individuals, through a stochastic differential equation (SDE) that governs the collective dynamics of the group. We apply this technique on both synthetic and real-world datasets, and identify the deterministic and stochastic aspects of the dynamics using drift and diffusion fields, enabling us to make novel inferences about the nature of order in these systems.
翻译:集体运动是一种自然界中的无处不在的现象,它在物理学、工程学和数学领域中激发了开发数学模型和生物启发式设计的灵感。在小到中等规模的群体中($\sim$10-1000个个体,也称为"中等规模"),由于随机性的存在,集体运动可能表现出非平凡的特征。因此,对于确定性和随机性方面的动态特征进行特征化对于研究中等规模的集体现象至关重要。本文采用基于物理学的、基于神经网络的方法,通过一个随机微分方程(SDE)来描述相互作用个体的随机群体动态。我们将这种技术应用于合成和真实数据集,并使用漂移和扩散场来确定动态的确定性和随机性方面,从而使我们能够对这些系统中的秩序特性进行新的推断。