We prove PSPACE-completeness of several reversible, fully deterministic systems. At the core, we develop a framework for such proofs (building on a result of Tsukiji and Hagiwara and a framework for motion planning through gadgets), showing that any system that can implement three basic gadgets is PSPACE-complete. We then apply this framework to four different systems, showing its versatility. First, we prove that Deterministic Constraint Logic is PSPACE-complete, fixing an error in a previous argument from 2008. Second, we give a new PSPACE-hardness proof for the reversible `billiard ball' model of Fredkin and Toffoli from 40 years ago, newly establishing hardness when only two balls move at once. Third, we prove PSPACE-completeness of zero-player motion planning with any reversible deterministic interacting $k$-tunnel gadget and a `rotate clockwise' gadget (a zero-player analog of branching hallways). Fourth, we give simpler proofs that zero-player motion planning is PSPACE-complete with just a single gadget, the 3-spinner. These results should in turn make it even easier to prove PSPACE-hardness of other reversible deterministic systems.
翻译:我们证明了几个可逆的、完全确定性的系统已经完成了PSPACE。 在核心方面,我们为这些证据制定了一个新的框架(以Tsukiji和Hagiwara的结果为基础,并建立了一个通过小工具进行运动规划的框架),表明任何能够实施三个基本小装置的系统都是PSPACE完成的。我们然后将这个框架应用到四个不同的系统,显示了它的多功能性。首先,我们证明,确定性约束逻辑是完成的,修复了2008年的上一个论点中的一个错误。第二,我们为40年前弗雷德金和托夫利的可逆的“billard Ball”模型提供了一个新的PSPACE硬性证明,当只有两个球一次移动时,新建立了硬性。第三,我们证明PSPACE的零玩家动作规划是完整的,任何可逆的确定性互动 $-tnelget Gapet和“rotrotrotwey”组合(一个甚至与分支走廊的零玩者模拟器样的组合 ) 。第四,我们给FredkintrocEBalls,我们提供了更简单的证明, CDEPEPEAP-CE-CE-CE-chimpres returst