In this paper, we present optimal error estimates of the local discontinuous Galerkin method with generalized numerical fluxes for one-dimensional nonlinear convection-diffusion systems. The upwind-biased flux with adjustable numerical viscosity for the convective term is chosen based on the local characteristic decomposition, which is helpful in resolving discontinuities of degenerate parabolic equations without enforcing any limiting procedure. For the diffusive term, a pair of generalized alternating fluxes are considered. By constructing and analyzing generalized Gauss-Radau projections with respect to different convective or diffusive terms, we derive optimal error estimates for nonlinear convection-diffusion systems with the symmetrizable flux Jacobian and fully nonlinear diffusive problems. Numerical experiments including long time simulations, different boundary conditions and degenerate equations with discontinuous initial data are provided to demonstrate the sharpness of theoretical results.
翻译:在本文中,我们给出了对单维非线性对流扩散系统具有通用数字通量的局部不连续加列金法的最佳误差估计。选择对流术语具有可调整数字粘度的上风偏差通量时,所依据的是当地特性分解,这有助于在不执行任何限制程序的情况下解决退化的抛物线方程式的不连续性。对调用术语而言,考虑了一对通用交替通量。通过构建和分析不同对流或对流术语的通用高斯-拉多预测,我们为非线性对流系统得出最佳误差估计,与可调整的雅各雅各雅和完全非线性对流的对流和完全非线性对流问题有关。提供了包括长时间模拟、不同边界条件和带有不连续初始数据的退化方程式在内的数值实验,以证明理论结果的精确性。