The phenomenon of hysteresis is commonly observed in many UV thermal experiments involving unmodified or modified nucleic acids. In presence of hysteresis, the thermal curves are irreversible and demand a significant effort to produce the reaction-specific kinetic and thermodynamic parameters. In this article, we describe a unified statistical procedure to analyze such thermal curves. Our method applies to experiments with intramolecular as well as intermolecular reactions. More specifically, the proposed method allows one to handle the thermal curves for the formation of duplexes, triplexes, and various quadruplexes in exactly the same way. The proposed method uses a local polynomial regression for finding the smoothed thermal curves and calculating their slopes. This method is more flexible and easy to implement than the least squares polynomial smoothing which is currently almost universally used for such purposes. Full analyses of the curves including computation of kinetic and thermodynamic parameters can be done using freely available statistical software. In the end, we illustrate our method by analyzing irreversible curves encountered in the formations of a G-quadruplex and an LNA-modified parallel duplex.
翻译:歇斯底里现象在涉及未经修改或修改的核酸的许多紫外热实验中经常观察到歇斯底里现象。在歇斯底里的情况下,热曲线是不可逆转的,需要做出重大努力来产生反应特定的动能和热动力参数。在本条中,我们描述了用于分析这种热曲线的统一统计程序。我们的方法适用于分子内部和分子间反应的实验。更具体地说,建议的方法允许一个人以完全相同的方式处理形成双面体、三氧化物和各种四面体的热曲线。提议的方法使用局部多面回归法来寻找光滑的热曲线并计算其坡度。这种方法比目前几乎普遍用于此种目的的最小方形多色平滑度方法更加灵活和容易实施。完全分析曲线,包括电动和热力参数的计算,可以使用可自由获得的统计软件进行。最后,我们通过分析在G-quruplus和平行模模中遇到的不可逆转的曲线来说明我们的方法。