In this paper, we propose a novel accelerated gradient method called ANITA for solving the fundamental finite-sum optimization problems. Concretely, we consider both general convex and strongly convex settings: i) For general convex finite-sum problems, ANITA improves previous state-of-the-art result given by Varag (Lan et al., 2019). In particular, for large-scale problems or the convergence error is not very small, i.e., $n \geq \frac{1}{\epsilon^2}$, ANITA obtains the \emph{first} optimal result $O(n)$, matching the lower bound $\Omega(n)$ provided by Woodworth and Srebro (2016), while previous results are $O(n \log \frac{1}{\epsilon})$ of Varag (Lan et al., 2019) and $O(\frac{n}{\sqrt{\epsilon}})$ of Katyusha (Allen-Zhu, 2017). ii) For strongly convex finite-sum problems, we also show that ANITA can achieve the optimal convergence rate $O\big((n+\sqrt{\frac{nL}{\mu}})\log\frac{1}{\epsilon}\big)$ matching the lower bound $\Omega\big((n+\sqrt{\frac{nL}{\mu}})\log\frac{1}{\epsilon}\big)$ provided by Lan and Zhou (2015). Besides, ANITA enjoys a simpler loopless algorithmic structure unlike previous accelerated algorithms such as Varag (Lan et al., 2019) and Katyusha (Allen-Zhu, 2017) where they use double-loop structures. Moreover, we provide a novel \emph{dynamic multi-stage convergence analysis}, which is the key technical part for improving previous results to the optimal rates. We believe that our new theoretical rates and novel convergence analysis for the fundamental finite-sum problem will directly lead to key improvements for many other related problems, such as distributed/federated/decentralized optimization problems (e.g., Li and Richt\'arik, 2021). Finally, the numerical experiments show that ANITA converges faster than the previous state-of-the-art Varag (Lan et al., 2019), validating our theoretical results and confirming the practical superiority of ANITA.


翻译:在本文中, 我们提出一种叫做 ANITA 的新型加速梯度方法, 用于解决根本性的有限和优化问题。 具体地说, 我们考虑的是普通的电流和强烈的电流设置 : (i) 对于一般的电流和限量问题, ANITA 直接改善了Varag( Lan等人, 2019年) 给出的以往最新结果。 特别是, 对于大规模的问题或趋同错误来说, 并不是很小的, 即 $\ gq\ flax{ 1\ flickr=2} 美元, ANITA 获得整个电流化的最好结果 $(n), 匹配了Woodworth 和 Srebroot(n) 提供的较低约束 美元问题。 而以前的结果是 Valaglex( Lan etq) 2019 和 $OOO( flickral) 的变现 和 Ral- dislational- dislational dies a.

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月20日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员