KBQA is a task that requires to answer questions by using semantic structured information in knowledge base. Previous work in this area has been restricted due to the lack of large semantic parsing dataset and the exponential growth of searching space with the increasing hops of relation paths. In this paper, we propose an efficient pipeline method equipped with a pre-trained language model. By adopting Beam Search algorithm, the searching space will not be restricted in subgraph of 3 hops. Besides, we propose a data generation strategy, which enables our model to generalize well from few training samples. We evaluate our model on an open-domain complex Chinese Question Answering task CCKS2019 and achieve F1-score of 62.55% on the test dataset. In addition, in order to test the few-shot learning capability of our model, we ramdomly select 10% of the primary data to train our model, the result shows that our model can still achieves F1-score of 58.54%, which verifies the capability of our model to process KBQA task and the advantage in few-shot Learning.
翻译:KBQA 是一项任务, 需要使用知识库中的语义结构化信息来回答问题。 由于缺少大型语义解析数据集, 以及搜索空间的指数性增长, 故此领域先前的工作受到限制 。 在本文中, 我们提议了一种高效的管道方法, 配备了经过预先培训的语言模式。 通过采用Baam搜索算法, 搜索空间将不受3个跳子的子集限制 。 此外, 我们提议了一个数据生成战略, 使得我们的模型能够从少数培训样本中很好地推广。 我们评估了我们关于开放的中国复杂问题解答任务CCKS2019的模型, 并在测试数据集中实现了62.55%的F1级。 此外, 为了测试我们模型的几张学习能力, 我们粗略地选择了10%的原始数据来培训我们的模型。 结果显示, 我们的模型仍然能够达到58.54%的F1核心, 从而验证了我们模型处理 KBQA 任务的能力, 以及几发学习的优势 。