Question answering on knowledge bases (KBQA) poses a unique challenge for semantic parsing research due to two intertwined factors: large search space and ambiguities in schema linking. The predominant ranking-based KBQA models, which rely on a candidate enumeration step to reduce the search space, struggle with flexibility and have impractical online running time. In this paper, we present ArcaneQA, a novel generation-based model that addresses both the large search space and schema linking in a unified framework with two mutually boosting ingredients: we use dynamic program induction to tackle the large search space and dynamic contextualized encoding to enhance schema linking. Experiment results on multiple popular KBQA datasets demonstrate the highly competitive performance of ArcaneQA in both effectiveness and efficiency.
翻译:在知识基础(KBQA)上回答问题对语义分析研究提出了独特的挑战,因为有两个相互交织的因素:巨大的搜索空间和方略连接的模糊性。以排名为基础的主要KBQA模型依靠候选查点步骤来缩小搜索空间,灵活地挣扎,在线运行时间不切实际。本文介绍ArcaneQA,这是一个新一代的代际模型,它既涉及大型搜索空间,也涉及在一个统一的框架中将大搜索空间和方略连接在一起的两种相互促进因素:我们使用动态程序入门处理大型搜索空间和动态背景编码,以加强方略链接。关于多个受欢迎的KBQA数据集的实验结果表明,ArcaneQA在效力和效率两方面都具有高度竞争力。