E-commerce business is revolutionizing our shopping experiences by providing convenient and straightforward services. One of the most fundamental problems is how to balance the demand and supply in market segments to build an efficient platform. While conventional machine learning models have achieved great success on data-sufficient segments, it may fail in a large-portion of segments in E-commerce platforms, where there are not sufficient records to learn well-trained models. In this paper, we tackle this problem in the context of market segment demand prediction. The goal is to facilitate the learning process in the target segments by leveraging the learned knowledge from data-sufficient source segments. Specifically, we propose a novel algorithm, RMLDP, to incorporate a multi-pattern fusion network (MPFN) with a meta-learning paradigm. The multi-pattern fusion network considers both local and seasonal temporal patterns for segment demand prediction. In the meta-learning paradigm, transferable knowledge is regarded as the model parameter initialization of MPFN, which are learned from diverse source segments. Furthermore, we capture the segment relations by combining data-driven segment representation and segment knowledge graph representation and tailor the segment-specific relations to customize transferable model parameter initialization. Thus, even with limited data, the target segment can quickly find the most relevant transferred knowledge and adapt to the optimal parameters. We conduct extensive experiments on two large-scale industrial datasets. The results justify that our RMLDP outperforms a set of state-of-the-art baselines. Besides, RMLDP has been deployed in Taobao, a real-world E-commerce platform. The online A/B testing results further demonstrate the practicality of RMLDP.


翻译:电子商务业务正在通过提供方便和直截了当的服务而使我们的购物经验发生革命性的变化; 最根本的问题之一是如何平衡市场各部分的供需,以建立一个高效的平台; 虽然传统机器学习模式在数据满足部分取得了巨大成功,但在电子商务平台各部分的大规模分流中可能失败,因为这些部分没有足够的记录来学习经过良好培训的模式; 在本文件中,我们在市场部分需求预测的背景下处理这一问题; 目标是通过利用数据满足源部分所学知识,促进目标部分的学习进程; 具体地说,我们提议采用新的算法,即RMLDP, 以纳入多模式化电子组合网络(MP NFM),并采用元化模式模式模式模式模式模式模式模式模式; 多模式融合网络既考虑本地和季节性时间模式模式,以预测部分需求; 在元化模式模式模式模式中,将可转让知识视为MFMFM的初始化模型模型的模型; 此外,我们通过将数据驱动部分和部分知识图解成,将分部分关系调整成分流关系,将可转换为可转换的可移动模型初始化的模型; 因此,可快速地将大规模数据测试。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
10+阅读 · 2020年11月26日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员