Accurate traffic prediction is crucial to the guidance and management of urban traffics. However, most of the existing traffic prediction models do not consider the computational burden and memory space when they capture spatial-temporal dependence among traffic data. In this work, we propose a factorized Spatial-Temporal Tensor Graph Convolutional Network to deal with traffic speed prediction. Traffic networks are modeled and unified into a graph that integrates spatial and temporal information simultaneously. We further extend graph convolution into tensor space and propose a tensor graph convolution network to extract more discriminating features from spatial-temporal graph data. To reduce the computational burden, we take Tucker tensor decomposition and derive factorized a tensor convolution, which performs separate filtering in small-scale space, time, and feature modes. Besides, we can benefit from noise suppression of traffic data when discarding those trivial components in the process of tensor decomposition. Extensive experiments on two real-world traffic speed datasets demonstrate our method is more effective than those traditional traffic prediction methods, and meantime achieves state-of-the-art performance.
翻译:准确的交通量预测对于城市交通量的指导和管理至关重要,然而,大多数现有的交通量预测模型在收集交通数据的空间时依赖性时,并不考虑计算负担和内存空间。在这项工作中,我们提议采用一个因数化的空间-时钟图集变异网络来处理交通速度预测。交通网络建模和统一成一个同时将空间和时间信息整合在一起的图表。我们进一步将图形熔化扩展至拉默空间,并提议建立一个气压图变动网络,以便从空间时钟图数据中提取更多的差别性能。为了减少计算负担,我们采用塔克·多诺分解变,并产生一个因数变变的因数,在小型空间、时间和地貌模式中分别进行过滤。此外,在抛弃高压分解过程中的这些小块时,我们可以从交通量数据抑制噪音中受益。在两个真实世界交通速度数据集上进行的广泛实验,表明我们的方法比这些传统的交通量预测方法更有效,同时实现最先进的性能。