We consider the classical fair division problem which studies how to allocate resources fairly and efficiently. We give a complete landscape on the computational complexity and approximability of maximizing the social welfare within (1) envy-free up to any item (EFX) and (2) envy-free up to one item (EF1) allocations of indivisible goods for both normalized and unnormalized valuations. We show that a partial EFX allocation may have a higher social welfare than a complete EFX allocation, while it is well-known that this is not true for EF1 allocations. Thus, our first group of results focuses on the problem of maximizing social welfare subject to (partial) EFX allocations. For $n=2$ agents, we provide a polynomial time approximation scheme (PTAS) and an NP-hardness result. For a general number of agents $n>2$, we present algorithms that achieve approximation ratios of $O(n)$ and $O(\sqrt{n})$ for unnormalized and normalized valuations, respectively. These results are complemented by the asymptotically tight inapproximability results. We also study the same constrained optimization problem for EF1. For $n=2$, we show a fully polynomial time approximation scheme (FPTAS) and complement this positive result with an NP-hardness result. For general $n$, we present polynomial inapproximability ratios for both normalized and unnormalized valuations. Our results also imply the price of EFX is $\Theta(\sqrt{n})$ for normalized valuations, which is unknown in the previous literature.
翻译:我们考虑了传统的公平分工问题,研究如何公平和高效地分配资源。我们给出了一个完整的关于计算复杂性和最大化社会福利在计算上的可能性的完整图景:(1) 任何项目(EFX)无嫉妒,(2) 一个项目(EF1)无嫉妒地分配不可分割的货物,用于标准化和未正常化的估值。我们表明,部分EFX分配的社会福利可能高于完全的EFX分配,而对于EF1分配的情况则并非如此。因此,我们的第一组结果还侧重于在(部分)正常的EFX分配范围内最大限度地实现社会福利最大化的问题。对于任何项目(EFX)无嫉妒地(EFX)无嫉妒地,以及(2) 一个项目(EF1)无嫉妒地分配一个项目(EF1)的不可分割性商品。对于一般的代理人($>2),我们提出的算法可能达到美元(n)和美元(sqrtrccurity)的近似比率,对于不正常化和标准化的估值结果,这些结果也得到了补充。关于(我们当前不定期的)成本估值的不固定性(SFPF1)结果的不透明性研究结果。我们也显示。