We consider the classical fair division problem which studies how to allocate resources fairly and efficiently. We give a complete landscape on the computational complexity and approximability of maximizing the social welfare within (1) envy-free up to any item (EFX) and (2) envy-free up to one item (EF1) allocations of indivisible goods for both normalized and unnormalized valuations. We show that a partial EFX allocation may have a higher social welfare than a complete EFX allocation, while it is well-known that this is not true for EF1 allocations. Thus, our first group of results focuses on the problem of maximizing social welfare subject to (partial) EFX allocations. For $n=2$ agents, we provide a polynomial time approximation scheme (PTAS) and an NP-hardness result. For a general number of agents $n>2$, we present algorithms that achieve approximation ratios of $O(n)$ and $O(\sqrt{n})$ for unnormalized and normalized valuations, respectively. These results are complemented by the asymptotically tight inapproximability results. We also study the same constrained optimization problem for EF1. For $n=2$, we show a fully polynomial time approximation scheme (FPTAS) and complement this positive result with an NP-hardness result. For general $n$, we present polynomial inapproximability ratios for both normalized and unnormalized valuations. Our results also imply the price of EFX is $\Theta(\sqrt{n})$ for normalized valuations, which is unknown in the previous literature.


翻译:我们考虑了传统的公平分工问题,研究如何公平和高效地分配资源。我们给出了一个完整的关于计算复杂性和最大化社会福利在计算上的可能性的完整图景:(1) 任何项目(EFX)无嫉妒,(2) 一个项目(EF1)无嫉妒地分配不可分割的货物,用于标准化和未正常化的估值。我们表明,部分EFX分配的社会福利可能高于完全的EFX分配,而对于EF1分配的情况则并非如此。因此,我们的第一组结果还侧重于在(部分)正常的EFX分配范围内最大限度地实现社会福利最大化的问题。对于任何项目(EFX)无嫉妒地(EFX)无嫉妒地,以及(2) 一个项目(EF1)无嫉妒地分配一个项目(EF1)的不可分割性商品。对于一般的代理人($>2),我们提出的算法可能达到美元(n)和美元(sqrtrccurity)的近似比率,对于不正常化和标准化的估值结果,这些结果也得到了补充。关于(我们当前不定期的)成本估值的不固定性(SFPF1)结果的不透明性研究结果。我们也显示。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员