Despite its pivotal role in research experiments, code correctness is often presumed only on the basis of the perceived quality of the results. This comes with the risk of erroneous outcomes and potentially misleading findings. To address this issue, we posit that the current focus on result reproducibility should go hand in hand with the emphasis on coding best practices. We bolster our call to the NLP community by presenting a case study, in which we identify (and correct) three bugs in widely used open-source implementations of the state-of-the-art Conformer architecture. Through comparative experiments on automatic speech recognition and translation in various language settings, we demonstrate that the existence of bugs does not prevent the achievement of good and reproducible results and can lead to incorrect conclusions that potentially misguide future research. In response to this, this study is a call to action toward the adoption of coding best practices aimed at fostering correctness and improving the quality of the developed software.


翻译:---- 重现性与正确性并重:在NLP中测试代码的重要性 翻译摘要: 尽管程序代码在研究实验中具有关键作用,但程序正确性往往只根据结果质量来推断。这会带来错误结果和潜在的误导性研究发现的风险。为了解决这个问题,我们认为当前对结果可重现性的关注应该与对编码最佳实践的重视相结合。我们通过一个案例研究来支持我们对NLP社区的呼吁,在该案例研究中,我们发现(并纠正)了现有的开源Conformer架构实现中的三个错误。通过在不同语言设置下进行自动语音识别和翻译的比较实验,我们证明了存在错误并不妨碍获得良好且可重复的结果,而且可能导致不正确的结论,从而潜在地误导今后的研究。作为回应,这项研究呼吁采用旨在促进正确性和提高开发软件质量的编码最佳实践。

0
下载
关闭预览

相关内容

【KDD2022教程】图算法公平性:方法与趋势,200页ppt
专知会员服务
41+阅读 · 2022年8月20日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
1+阅读 · 2023年5月18日
Arxiv
35+阅读 · 2021年8月2日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员