In this work, the z-transform is presented to analyze time-discrete solutions for Volterra integrodifferential equations (VIDEs) with nonsmooth multi-term kernels in the Hilbert space, and this class of continuous problem was first considered and analyzed by Hannsgen and Wheeler (SIAM J Math Anal 15 (1984) 579-594). This work discusses three cases of kernels $\beta_q(t)$ included in the integrals for the multi-term VIDEs, from which we use corresponding numerical techniques to approximate the solution of multi-term VIDEs in different cases. Firstly, for the case of $\beta_1(t), \beta_2(t) \in \mathrm{L}_1(\mathbb{R}_+)$, the Crank-Nicolson (CN) method and interpolation quadrature (IQ) rule are applied to time-discrete solutions of the multi-term VIDEs; secondly, for the case of $\beta_1(t)\in \mathrm{L}_1(\mathbb{R}_+)$ and $\beta_2(t)\in \mathrm{L}_{1,\text{loc}}(\mathbb{R}_+)$, second-order backward differentiation formula (BDF2) and second-order convolution quadrature (CQ) are employed to discretize the multi-term problem in the time direction; thirdly, for the case of $\beta_1(t), \beta_2(t)\in \mathrm{L}_{1,\text{loc}}(\mathbb{R}_+)$, we utilize the CN method and trapezoidal CQ (TCQ) rule to approximate temporally the multi-term problem. Then for the discrete solution of three cases, the long-time global stability and convergence are proved based on the z-transform and certain appropriate assumptions. Furthermore, the long-time estimate of the third case is confirmed by the numerical tests.
翻译:在本文中,引入 z 变换来分析 Hilbert 空间中带有非光滑多项式核的 Volterra 微分积分方程 (VIDEs) 的时间离散化解,这种连续问题的这个类别首先由 Hannsgen 和 Wheeler(SIAM J Math Anal 15 (1984) 579-594)提出和分析。本文讨论了三种核 $\beta_q(t)$ 的情况,这些核包含在多项式 VIDEs 的积分中,并从中选择相应的数值技术来逼近不同情况下的多项式 VIDEs 的解. 首先,对于 $\beta_1(t), \beta_2(t) \in \mathrm{L}_1(\mathbb{R}_+)$ 的情况,将用 Crank-Nicolson (CN) 方法和 interpolation quadrature (IQ)规则来离散化多项式 VIDEs 的时间离散解;其次,将用二阶 backward differentiation formula (BDF2) 和二阶卷积积分 (CQ) 来离散化时间方向的多项式问题,对于 $\beta_1(t)\in \mathrm{L}_1(\mathbb{R}_+)$ 和 $\beta_2(t) \in \mathrm{L}_{1,\text{loc}}(\mathbb{R}_+)$ 的情况;最后,对于 $\beta_1(t), \beta_2(t)\in \mathrm{L}_{1,\text{loc}}(\mathbb{R}_+)$ 的情况,将利用 Crank-Nicolson (CN) 方法和梯形卷积积分 (TCQ) 规则来近似时间多项式问题。然后,针对三种情况的离散解,基于 z 变换和一定的适当假设,证明了长时间全局稳定性和收敛性。此外,对于第三种情况的长时间估计,通过数值测试得到了证实。