We present a new distribution-free conformal prediction algorithm for sequential data (e.g., time series), called the \textit{sequential predictive conformal inference} (\texttt{SPCI}). We specifically account for the nature that time series data are non-exchangeable, and thus many existing conformal prediction algorithms are not applicable. The main idea is to exploit the temporal dependence of non-conformity scores (e.g., prediction residuals); thus, the past residuals contain information about future ones. Then we cast the problem of conformal prediction interval as predicting the quantile of a future residual, given a user-specified point prediction algorithm. Theoretically, we establish asymptotic valid conditional coverage upon extending consistency analyses in quantile regression. Using simulation and real-data experiments, we demonstrate a significant reduction in interval width of \texttt{SPCI} compared to other existing methods under the desired empirical coverage.
翻译:我们为相继数据(例如,时间序列)提出了一个新的不分发的一致预测算法(例如,时间序列),称为\ textit{序列预测相近推法} (\ textt{SPCI}) 。我们具体解释了时间序列数据不可交换的性质,因此许多现有的一致预测算法不适用。主要想法是利用不一致性分数(例如,预测残留物)的暂时依赖性;因此,过去的残余物含有关于未来数据的信息。然后,我们把符合预测间隔的问题作为预测未来残余物的量的问题,根据用户指定的点预测算法。理论上,我们在扩大对四分回归的一致性分析时,确定无差别的有条件覆盖。我们利用模拟和真实数据实验,表明与预期的经验覆盖下的其他现有方法相比, \ textt{SPCI} 的间隔宽度显著缩小。