Despite attractive theoretical guarantees and practical successes, Predictive Interval (PI) given by Conformal Prediction (CP) may not reflect the uncertainty of a given model. This limitation arises from CP methods using a constant correction for all test points, disregarding their individual uncertainties, to ensure coverage properties. To address this issue, we propose using a Quantile Regression Forest (QRF) to learn the distribution of nonconformity scores and utilizing the QRF's weights to assign more importance to samples with residuals similar to the test point. This approach results in PI lengths that are more aligned with the model's uncertainty. In addition, the weights learnt by the QRF provide a partition of the features space, allowing for more efficient computations and improved adaptiveness of the PI through groupwise conformalization. Our approach enjoys an assumption-free finite sample marginal and training-conditional coverage, and under suitable assumptions, it also ensures conditional coverage. Our methods work for any nonconformity score and are available as a Python package. We conduct experiments on simulated and real-world data that demonstrate significant improvements compared to existing methods.


翻译:尽管具有有吸引力的理论保证和实用成功的可能性,由一致性预测 (CP) 给出的预测区间 (PI) 可能无法反映模型的不确定性。这种局限性出现在 CP 方法为所有测试点使用常数校正,忽略它们的个体不确定性,以确保覆盖特性时。为了解决这个问题,我们建议使用量化回归森林 (QRF) 学习非一致性得分的分布,并利用 QRF 的权重为具有类似于测试点的残差的样本分配更多的重要性。这种方法导致了更符合模型不确定性的预测区间长度。此外,QRF 学到的权重提供了特征空间的一个分割,允许更有效的计算和通过分组一致化提高 PI 的适应性。我们的方法享有无假设的有限样本边缘和训练条件覆盖范围,并在适当的假设下也确保条件覆盖范围。我们的方法适用于任何非一致性分数,并作为 Python 包提供。我们对模拟和实际数据进行实验,结果显示与现有方法相比有显著的改进。

0
下载
关闭预览

相关内容

图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
94+阅读 · 2020年3月25日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年5月25日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关VIP内容
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
94+阅读 · 2020年3月25日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员