State-space models (SSMs) are a common tool for modeling multi-variate discrete-time signals. The linear-Gaussian (LG) SSM is widely applied as it allows for a closed-form solution at inference, if the model parameters are known. However, they are rarely available in real-world problems and must be estimated. Promoting sparsity of these parameters favours both interpretability and tractable inference. In this work, we propose GraphIT, a majorization-minimization (MM) algorithm for estimating the linear operator in the state equation of an LG-SSM under sparse prior. A versatile family of non-convex regularization potentials is proposed. The MM method relies on tools inherited from the expectation-maximization methodology and the iterated reweighted-l1 approach. In particular, we derive a suitable convex upper bound for the objective function, that we then minimize using a proximal splitting algorithm. Numerical experiments illustrate the benefits of the proposed inference technique.
翻译:状态空间模型(State-space models,SSMs)是建模多变量离散时间信号的常用工具。线性高斯(Linear-Gaussian,LG)SSM由于允许闭合形式的推断,在广泛应用,但实际问题中很少能获得模型参数,因此需要估计。通过促进这些参数的稀疏性,可以实现模型的可解释性和易处理的推断。本文提出了一种名为GraphIT的算法,用于估计LG-SSM状态方程中的线性操作符,其中还加入了稀疏先验。提出了一种多功能的非凸正则化潜力函数。该算法依赖于期望最大化方法和迭代加权L1算法。特别是,我们导出了适当的凸上界目标函数,并使用门限分离算法最小化该问题的目标函数。数值实验证明了所提出推断技术的优点。