Adaptive importance sampling is a widely spread Monte Carlo technique that uses a re-weighting strategy to iteratively estimate the so-called target distribution. A major drawback of adaptive importance sampling is the large variance of the weights which is known to badly impact the accuracy of the estimates. This paper investigates a regularization strategy whose basic principle is to raise the importance weights at a certain power. This regularization parameter, that might evolve between zero and one during the algorithm, is shown (i) to balance between the bias and the variance and (ii) to be connected to the mirror descent framework. Using a kernel density estimate to build the sampling policy, the uniform convergence is established under mild conditions. Finally, several practical ways to choose the regularization parameter are discussed and the benefits of the proposed approach are illustrated empirically.


翻译:适应性重要性抽样是一种广泛推广的蒙特卡洛技术,它使用重新加权战略迭接估计所谓的目标分布;适应性重要性抽样的一个主要缺点是已知对估计准确性有严重影响的重量差异很大;本文调查了一种正规化战略,其基本原则是提高某一力量的重量;这一正规化参数在算法期间可能在零和1之间演化,显示(一) 平衡偏差和差异;(二) 与镜像下沉框架连接;利用内核密度估计来建立抽样政策,统一趋同是在温和的条件下建立的;最后,讨论了选择正规化参数的若干实际方法,并用经验说明拟议方法的好处。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员