We propose a novel framework for image clustering that incorporates joint representation learning and clustering. Our method consists of two heads that share the same backbone network - a "representation learning" head and a "clustering" head. The "representation learning" head captures fine-grained patterns of objects at the instance level which serve as clues for the "clustering" head to extract coarse-grain information that separates objects into clusters. The whole model is trained in an end-to-end manner by minimizing the weighted sum of two sample-oriented contrastive losses applied to the outputs of the two heads. To ensure that the contrastive loss corresponding to the "clustering" head is optimal, we introduce a novel critic function called "log-of-dot-product". Extensive experimental results demonstrate that our method significantly outperforms state-of-the-art single-stage clustering methods across a variety of image datasets, improving over the best baseline by about 5-7% in accuracy on CIFAR10/20, STL10, and ImageNet-Dogs. Further, the "two-stage" variant of our method also achieves better results than baselines on three challenging ImageNet subsets.


翻译:我们建议一个包含联合代表学习和分组的图像分组新框架。 我们的方法由两个共享主干网的首级“ 代表学习” 头和“ 分组”头的两头组成。 “ 代表学习”头在实例一级捕捉细微的物体类型, 用作“ 分组”头的线索, 以提取将对象分成组群的粗皮信息。 整个模型以端到端的方式接受培训, 最大限度地减少适用于两头输出的两个样本导向对比性损失的加权总和。 为了确保与“ 分组” 头相对应的对比性损失是最佳的, 我们引入了一个叫作“ 数字产品” 的新型评论功能。 广泛的实验结果显示, 我们的方法大大超越了将对象分成不同的图像数据集的单一阶段组合方法, 超过最佳基线, 将CIFAR10/20、 STL10 和图像网络- Dogs 的精确度降低5- 5- 7% 。 此外, “ 两阶段” 方法的变量也比三个具有挑战性的图像网络的基线取得更好的结果 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关VIP内容
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员