Bipartite graph embedding has recently attracted much attention due to the fact that bipartite graphs are widely used in various application domains. Most previous methods, which adopt random walk-based or reconstruction-based objectives, are typically effective to learn local graph structures. However, the global properties of bipartite graph, including community structures of homogeneous nodes and long-range dependencies of heterogeneous nodes, are not well preserved. In this paper, we propose a bipartite graph embedding called BiGI to capture such global properties by introducing a novel local-global infomax objective. Specifically, BiGI first generates a global representation which is composed of two prototype representations. BiGI then encodes sampled edges as local representations via the proposed subgraph-level attention mechanism. Through maximizing the mutual information between local and global representations, BiGI enables nodes in bipartite graph to be globally relevant. Our model is evaluated on various benchmark datasets for the tasks of top-K recommendation and link prediction. Extensive experiments demonstrate that BiGI achieves consistent and significant improvements over state-of-the-art baselines. Detailed analyses verify the high effectiveness of modeling the global properties of bipartite graph.
翻译:最近,由于两边图在不同应用领域广泛使用,两边图的嵌入最近引起人们的极大注意,因为两边图在不同应用领域广泛使用,以前采用随机步行或重建目标的大多数方法通常都对学习本地图形结构十分有效,但是,两边图的全球特性,包括同质节点的社区结构以及不同节点的长距离依赖性,并没有得到很好的保存。在本文件中,我们提出一个称为BiGI的双边图嵌入,以通过引入新的地方-全球信息目标来捕捉这种全球特性。具体地说,BiGI首先产生由两个原型代表组成的全球代表制。BiGI随后通过拟议的分层关注机制将抽样边缘作为地方代表制编码为本地代表制。通过尽量扩大地方和全球代表制之间的相互信息,BiGI使两边图中的节点具有全球相关性。我们用各种基准数据集来评价我们关于顶级建议和链接预测任务的模式。广泛的实验表明,BIGI在状态基线上取得了一致和显著的改进。详细分析证实了两边图的高度效力。