Existing deep-learning based tomographic image reconstruction methods do not provide accurate estimates of reconstruction uncertainty, hindering their real-world deployment. This paper develops a method, termed as the linearised deep image prior (DIP), to estimate the uncertainty associated with reconstructions produced by the DIP with total variation regularisation (TV). Specifically, we endow the DIP with conjugate Gaussian-linear model type error-bars computed from a local linearisation of the neural network around its optimised parameters. To preserve conjugacy, we approximate the TV regulariser with a Gaussian surrogate. This approach provides pixel-wise uncertainty estimates and a marginal likelihood objective for hyperparameter optimisation. We demonstrate the method on synthetic data and real-measured high-resolution 2D $\mu$CT data, and show that it provides superior calibration of uncertainty estimates relative to previous probabilistic formulations of the DIP. Our code is available at https://github.com/educating-dip/bayes_dip.
翻译:现有基于深层学习的图像重建方法无法提供重建不确定性的准确估计,从而妨碍其真实世界的部署。本文开发了一种方法,称为前线性深度图像(DIP),用以估计与DIP产生的重建相关的不确定性,并全面调整(TV),具体地说,我们向DIP提供与Gaussian-线性模型型错误栏的共和,该模型类型错误栏是从神经网络的局部直线化中围绕其优化参数计算出来的。为了保持共和性,我们用高斯代孕将电视定期处理器近似。这个方法为超分光度优化提供了像素的不确定性估计和边际可能性目标。我们展示了合成数据方法和实际测得的高分辨率2D$mu$CT数据,并显示它比DIP以前的概率配方提供了更精确的不确定性估计值校准值。我们的代码可在https://github.com/edgateting-dip/bayes_dip。