Diffuse optical tomography (DOT) is a severely ill-posed nonlinear inverse problem that seeks to estimate optical parameters from boundary measurements. In the Bayesian framework, the ill-posedness is diminished by incorporating {\em a priori} information of the optical parameters via the prior distribution. In case the target is sparse or sharp-edged, the common choice as the prior model are non-differentiable total variation and $\ell^1$ priors. Alternatively, one can hierarchically extend the variances of a Gaussian prior to obtain differentiable sparsity promoting priors. By doing this, the variances are treated as unknowns allowing the estimation to locate the discontinuities. In this work, we formulate hierarchical prior models for the nonlinear DOT inverse problem using exponential, standard gamma and inverse-gamma hyperpriors. Depending on the hyperprior and the hyperparameters, the hierarchical models promote different levels of sparsity and smoothness. To compute the MAP estimates, the previously proposed alternating algorithm is adapted to work with the nonlinear model. We then propose an approach based on the cumulative distribution function of the hyperpriors to select the hyperparameters. We evaluate the performance of the hyperpriors with numerical simulations and show that the hierarchical models can improve the localization, contrast and edge sharpness of the reconstructions.


翻译:光学成像仪( DOT) 是一个严重错误的非线性反向问题, 试图从边界测量中估算光学参数。 在巴伊西亚框架中, 通过先前分布将光学参数的先验性信息纳入到 Bayesian 框架, 从而降低了不正确性能。 如果目标稀少或锐化, 前一个模型的共同选择是不可区分的总变异和1美元前置值。 或者, 或者, 人们可以在等级上扩展高山前的差异差, 以获得不同可促进前置的偏移。 通过这样做, 差异被作为未知的处理, 使得无法估计不连续性。 在这项工作中, 我们用指数、 标准伽马和 反伽马超亮度仪来为非线性格 DOT 的反问题制定等级先前模型。 根据超优度和超光度计, 等级模型会促进不同程度的偏差和光度。 或者, 将先前提议的交替算算法调整为非线性能模型的工作。 然后, 我们提出一个非线性模型的等级比值分析方法, 来显示超级模型的高级分析。 我们选择了超级模型的模拟性能分析。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员