Linear partial differential equations (PDEs) are an important, widely applied class of mechanistic models, describing physical processes such as heat transfer, electromagnetism, and wave propagation. In practice, specialized numerical methods based on discretization are used to solve PDEs. They generally use an estimate of the unknown model parameters and, if available, physical measurements for initialization. Such solvers are often embedded into larger scientific models or analyses with a downstream application such that error quantification plays a key role. However, by entirely ignoring parameter and measurement uncertainty, classical PDE solvers may fail to produce consistent estimates of their inherent approximation error. In this work, we approach this problem in a principled fashion by interpreting solving linear PDEs as physics-informed Gaussian process (GP) regression. Our framework is based on a key generalization of a widely-applied theorem for conditioning GPs on a finite number of direct observations to observations made via an arbitrary bounded linear operator. Crucially, this probabilistic viewpoint allows to (1) quantify the inherent discretization error; (2) propagate uncertainty about the model parameters to the solution; and (3) condition on noisy measurements. Demonstrating the strength of this formulation, we prove that it strictly generalizes methods of weighted residuals, a central class of PDE solvers including collocation, finite volume, pseudospectral, and (generalized) Galerkin methods such as finite element and spectral methods. This class can thus be directly equipped with a structured error estimate and the capability to incorporate uncertain model parameters and observations. In summary, our results enable the seamless integration of mechanistic models as modular building blocks into probabilistic models.
翻译:线性部分差异方程式( PDEs) 是一个重要的、广泛应用的机械模型类别, 描述热传输、 电磁学和波波传播等物理过程。 在实践中, 使用基于离散的专门数字方法解决 PDEs 。 它们通常使用未知模型参数的估计数, 如果有的话, 初始化的物理测量。 这些解决方案往往嵌入更大的科学模型或分析中, 其下游应用中, 错误量化具有关键作用。 但是, 古典 PDE 解析器完全无视参数和测量不确定性, 可能无法得出对自身近似错误的一致估计。 在这项工作中, 我们以有原则的方式处理这一问题, 将线性PDEs解解析为物理知情的Gossian进程( GP) 回归。 我们的框架基于一个广泛应用的语标, 将GPGPs直接观测的有限数量与通过任意约束线性操作器进行观测相匹配。 很显然, 典型的PDE解析性观点允许(1) 量化内在的离散错误; (2) 将结构模型的参数参数推解到解决方案的模型的不确定性, 将精度的模型的模型的参数推到解到解到解决方案; (3) 将精度的精度的精度转化为的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度,, 将精度的精度的精度的精度的精度测量度测量度测量度测量度测量度的精度的精度的精度测量度测量度测量度的精度, 。