One of the main challenges in deep learning-based underwater image enhancement is the limited availability of high-quality training data. Underwater images are difficult to capture and are often of poor quality due to the distortion and loss of colour and contrast in water. This makes it difficult to train supervised deep learning models on large and diverse datasets, which can limit the model's performance. In this paper, we explore an alternative approach to supervised underwater image enhancement. Specifically, we propose a novel unsupervised underwater image enhancement framework that employs a conditional variational autoencoder (cVAE) to train a deep learning model with probabilistic adaptive instance normalization (PAdaIN) and statistically guided multi-colour space stretch that produces realistic underwater images. The resulting framework is composed of a U-Net as a feature extractor and a PAdaIN to encode the uncertainty, which we call UDnet. To improve the visual quality of the images generated by UDnet, we use a statistically guided multi-colour space stretch module that ensures visual consistency with the input image and provides an alternative to training using a ground truth image. The proposed model does not need manual human annotation and can learn with a limited amount of data and achieves state-of-the-art results on underwater images. We evaluated our proposed framework on eight publicly-available datasets. The results show that our proposed framework yields competitive performance compared to other state-of-the-art approaches in quantitative as well as qualitative metrics. Code available at https://github.com/alzayats/UDnet .
翻译:深层学习、水下图像提升的主要挑战之一是高质量的培训数据有限。水下图像难以捕捉,而且由于水中色彩和对比的扭曲和丧失,其质量往往很差。这使得很难在大型和多样化数据集上对受监督的深学习模型进行培训,这可以限制模型的性能。在本文中,我们探索了一种监督水下图像提升的替代方法。具体地说,我们提议了一个新的不受监督的水下图像强化框架,使用一个有条件的变异自动显示器(cVAE)来培训一个深度学习模型,该模型具有概率性适应实例正常化(PadaIN)和统计性指导多色空间,产生现实的水下图像。由此形成的框架由U-Net作为特征提取器和Padain组成,可以将不确定性(我们称之为UDnet)。为了提高UDnet产生的图像的视觉质量,我们使用一个以统计方式指导的多色空间扩展模块,可以确保与输入图像的视觉一致性,并且提供一种使用地面真实图像进行培训的替代方法。我们提议的模型在水下数据采集的结果框架中不需要经过什么手动的准确的数据。我们关于水下结果的模型,可以用来在公共图像上进行定量分析。我们的拟议模型的模型,用来对结果进行评估。我们现有的八度框架进行评估。我们所建的模型进行评估。我们所建的估价,可以用来用来以有限的数字的模型,可以用来在水上取得有限的数据。