Differentiable rendering aims to compute the derivative of the image rendering function with respect to the rendering parameters. This paper presents a novel algorithm for 6-DoF pose estimation through gradient-based optimization using a differentiable rendering pipeline. We emphasize two key contributions: (1) instead of solving the conventional 2D to 3D correspondence problem and computing reprojection errors, images (rendered using the 3D model) are compared only in the 2D feature space via sparse 2D feature correspondences. (2) Instead of an analytical image formation model, we compute an approximate local gradient of the rendering process through online learning. The learning data consists of image features extracted from multi-viewpoint renders at small perturbations in the pose neighborhood. The gradients are propagated through the rendering pipeline for the 6-DoF pose estimation using nonlinear least squares. This gradient-based optimization regresses directly upon the pose parameters by aligning the 3D model to reproduce a reference image shape. Using representative experiments, we demonstrate the application of our approach to pose estimation in proximity operations.
翻译:可区别的翻譯目的,是计算图像转换功能的衍生物,与设定参数有关。本文展示了6-DoF的新型算法,它通过使用一个可区分的转换管道,通过梯度优化进行估算。我们强调两个主要贡献:(1) 图像(使用3D模型)仅在2D地貌空间中通过稀疏的 2D 地貌对应物进行比较。(2) 我们用一个分析图像形成模型,而不是分析图像形成模型,我们通过在线学习来计算一个接近本地的绘制过程梯度。学习数据包含从多视点提取的图像特征,在形成相近处进行小扰动。梯度是通过6-DoF的铺设管道通过非线性最小方块进行估算而传播的。这种基于梯度的优化通过调整3D模型复制一个参考图像形状,直接在组合参数上回归。我们通过有代表性的实验,展示了我们在近距离操作中进行估算的方法的应用。