While Multiple Instance Learning (MIL) has shown promising results in digital Pathology Whole Slide Image (WSI) classification, such a paradigm still faces performance and generalization problems due to challenges in high computational costs on Gigapixel WSIs and limited sample size for model training. To deal with the computation problem, most MIL methods utilize a frozen pretrained model from ImageNet to obtain representations first. This process may lose essential information owing to the large domain gap and hinder the generalization of model due to the lack of image-level training-time augmentations. Though Self-supervised Learning (SSL) proposes viable representation learning schemes, the improvement of the downstream task still needs to be further explored in the conversion from the task-agnostic features of SSL to the task-specifics under the partial label supervised learning. To alleviate the dilemma of computation cost and performance, we propose an efficient WSI fine-tuning framework motivated by the Information Bottleneck theory. The theory enables the framework to find the minimal sufficient statistics of WSI, thus supporting us to fine-tune the backbone into a task-specific representation only depending on WSI-level weak labels. The WSI-MIL problem is further analyzed to theoretically deduce our fine-tuning method. Our framework is evaluated on five pathology WSI datasets on various WSI heads. The experimental results of our fine-tuned representations show significant improvements in both accuracy and generalization compared with previous works. Source code will be available at https://github.com/invoker-LL/WSI-finetuning.
翻译:虽然多实例学习(MIL)在数字病理学整体幻灯片图像分类方面显示出了令人乐观的结果,但这种模式仍面临业绩和概括问题,因为Gigapixel WSIS的高计算成本以及模型培训样本规模有限。为了解决计算问题,大多数MIL方法使用图像网的冻结的预先培训模型,以便首先获得演示。由于广域差距,这一过程可能会失去基本信息,并由于缺乏图像水平培训时间增强,妨碍了模型的普及。虽然自我监督学习(SSL)提出了可行的代表性学习计划,但在从SSL的任务-不可知性特征转换到部分标签监督下学习的特定任务方面仍需进一步探讨下游任务的改进。为了减轻计算成本和业绩的两难困境,我们提议由信息博特勒克理论驱动的高效WSI微调框架。 理论使得框架能够找到最低限度的WSI/培训时间强化度统计数据,从而支持我们将骨架调整成一个任务特定代表性的精细化度,仅取决于WSI-I级的精确性特征特性特性特性特性,在WSI-SI的精确度标签上进行重大的微的改进。在WSISISL的研订的研订方法上,在WSI的研订的研订的研订方法上,在WSI的精确的研订的研订的研订各种的研订的研订的研订的研订的研订方法上将显示的研订的研订的研订的研订的研订的研订的研。</s>