Defining sound and complete specifications for robots using formal languages is challenging, while learning formal specifications directly from demonstrations can lead to over-constrained task policies. In this paper, we propose a Bayesian interactive robot training framework that allows the robot to learn from both demonstrations provided by a teacher, and that teacher's assessments of the robot's task executions. We also present an active learning approach -- inspired by uncertainty sampling -- to identify the task execution with the most uncertain degree of acceptability. Through a simulated experiment, we demonstrate that our active learning approach identifies a teacher's intended task specification with an equivalent or greater similarity when compared to an approach that learns purely from demonstrations. Finally, we demonstrate the efficacy of our approach in a real-world setting through a user-study based on teaching a robot to set a dinner table.
翻译:为使用正式语言的机器人确定健全和完整的规格具有挑战性,而直接从演示中学习正规规格则可能导致过度制约的任务政策。在本文件中,我们提议一个贝叶斯互动机器人培训框架,使机器人能够从教师提供的两种演示中学习,以及教师对机器人任务处决的评估。我们还提出了一个积极的学习方法,在不确定性抽样的启发下,以最不确定的可接受程度确定任务执行。通过模拟实验,我们证明我们的积极学习方法确定了教师任务预期规格,与纯粹从演示中学习的方法相比,该规格具有同等或更大的相似性。最后,我们展示了我们的方法在现实世界中的有效性,通过基于教授机器人设置餐桌的用户研究,通过教授机器人进行用户研究。