Autonomous vehicles (AVs) need to interact with other traffic participants who can be either cooperative or aggressive, attentive or inattentive. Such different characteristics can lead to quite different interactive behaviors. Hence, to achieve safe and efficient autonomous driving, AVs need to be aware of such uncertainties when they plan their own behaviors. In this paper, we formulate such a behavior planning problem as a partially observable Markov Decision Process (POMDP) where the cooperativeness of other traffic participants is treated as an unobservable state. Under different cooperativeness levels, we learn the human behavior models from real traffic data via the principle of maximum likelihood. Based on that, the POMDP problem is solved by Monte-Carlo Tree Search. We verify the proposed algorithm in both simulations and real traffic data on a lane change scenario, and the results show that the proposed algorithm can successfully finish the lane changes without collisions.
翻译:自主车辆需要与其他交通参与者互动,他们可以是合作的,也可以是积极、关注的,也可以是不注意的。这些不同的特征可以导致完全不同的互动行为。因此,为了实现安全和高效的自主驾驶,AV在规划自己的行为时需要意识到这种不确定性。在本文件中,我们将这种行为规划问题作为部分可见的Markov 决策程序(POMDP) 来阐述,在这个程序中,其他交通参与者的合作被视为一种不可观察的状况。在不同的合作级别下,我们通过最大可能性的原则从真实交通数据中学习人类行为模型。在此基础上,POMDP问题由蒙特卡洛树搜索解决。我们在模拟和真实交通数据中验证了在车道变化情景上的拟议算法,结果显示,拟议的算法可以顺利完成航道变化,而不会发生碰撞。