We develop domain theory in constructive and predicative univalent foundations (also known as homotopy type theory). That we work predicatively means that we do not assume Voevodsky's propositional resizing axioms. Our work is constructive in the sense that we do not rely on excluded middle or the axiom of (countable) choice. Domain theory studies so-called directed complete posets (dcpos) and Scott continuous maps between them and has applications in programming language semantics, higher-type computability and topology. A common approach to deal with size issues in a predicative foundation is to work with information systems, abstract bases or formal topologies rather than dcpos, and approximable relations rather than Scott continuous functions. In our type-theoretic approach, we instead accept that dcpos may be large and work with type universes to account for this. A priori one might expect that complex constructions of dcpos result in a need for ever-increasing universes and are predicatively impossible. We show that such constructions can be carried out in a predicative setting. We illustrate the development with applications in the semantics of programming languages: the soundness and computational adequacy of the Scott model of PCF and Scott's $D_\infty$ model of the untyped $\lambda$-calculus. We also give a predicative account of continuous and algebraic dcpos, and of the related notions of a small basis and its rounded ideal completion. The fact that nontrivial dcpos have large carriers is in fact unavoidable and characteristic of our predicative setting, as we explain in a complementary chapter on the constructive and predicative limitations of univalent foundations. Our account of domain theory in univalent foundations is fully formalised with only a few minor exceptions. The ability of the proof assistant Agda to infer universe levels has been invaluable for our purposes.


翻译:我们以建设性和预言性单一基础(也称为同质类型理论)发展了域论。我们的工作预言性地意味着我们不以Voevodsky的主张重塑轴心。我们的工作具有建设性,因为我们不依赖被排斥的中间或(可计算)选择的轴心。在它们之间进行所谓的直接整形(dcpos)和Scott连续的地图研究,并在编程语言语义、较高类型易变和结构学方面的应用中具有应用性。在预言性基础中处理大小问题的常见做法是,与信息系统、抽象基础或形式表情学而不是dcpos一起工作。我们的工作是具有建设性关系,而不是斯科特的连续功能。在我们的类型理论学方法中,我们相反地认为,dcpos可能很大,而与类型宇宙打交道的预言事只能对此负责。我们先行的模型性结构,使得我们不断增长的宇宙变得非正统。我们发现,而预知性地表明,这种结构基础的构造基础可以以正值为基础,而代言地解释着我们的货币的精度。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
92+阅读 · 2021年5月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员