From earth system sciences to climate modeling and ecology, many of the greatest empirical modeling challenges are geographic in nature. As these processes are characterized by spatial dynamics, we can exploit their autoregressive nature to inform learning algorithms. We introduce SXL, a method for learning with geospatial data using explicitly spatial auxiliary tasks. We embed the local Moran's I, a well-established measure of local spatial autocorrelation, into the training process, "nudging" the model to learn the direction and magnitude of local autoregressive effects in parallel with the primary task. Further, we propose an expansion of Moran's I to multiple resolutions to capture effects at different spatial granularities and over varying distance scales. We show the superiority of this method for training neural networks using experiments with real-world geospatial data in both generative and predictive modeling tasks. The Moran's I embedding can be constructed easily for any spatial, numerical input and our approach can be used with arbitrary network architectures, consistently improving their performance as shown by our experiments. We also outperform appropriate, domain-specific spatial interpolation benchmarks. Our work highlights how integrating the geographic information sciences and spatial statistics into neural network models can address the specific challenges of spatial data. The code for our experiments is available on Github: https://github.com/konstantinklemmer/sxl.
翻译:从地球系统科学到气候建模和生态学,许多最伟大的实验模型挑战都是地理性质的。由于这些过程具有空间动态的特点,我们可以利用它们的自动递减性质来为学习算法提供信息。我们引入SXL,这是使用明确的空间辅助任务来学习地理空间数据的一种方法。我们将当地Moran's I(当地空间自主关系的一种既定衡量标准)嵌入培训过程,“减少”模型,以学习本地自动递减效应的方向和规模,同时完成主要任务。此外,我们提议将Moran's I扩展为多个分辨率,以捕捉不同空间颗粒和不同距离尺度的影响。我们展示这种方法在使用现实世界地理空间数据进行实验时的优势。Moran's I 嵌入到任何空间、数字投入和我们的方法都可以轻易地用于任意的网络结构结构,通过我们的实验来不断提高它们的性能。我们还提议将其超出适当的、具体地域空间内置模型/内置基准。我们的工作将地理数据整合到地球空间数据中去。