Decision curve analysis can be used to determine whether a personalized model for treatment benefit would lead to better clinical decisions. Decision curve analysis methods have been described to estimate treatment benefit using data from a single RCT. Our main objective is to extend the decision curve analysis methodology to the scenario where several treatment options exist and evidence about their effects comes from a set of trials, synthesized using network meta-analysis (NMA). We describe the steps needed to estimate the net benefit of a prediction model using evidence from studies synthesized in an NMA. We show how to compare personalized versus one-size-fit-all treatment decision-making strategies, like "treat none" or "treat all patients with a specific treatment" strategies. The net benefit per strategy can then be plotted for a plausible range of threshold probabilities to reveal the most clinically useful strategy. We applied our methodology to an NMA prediction model for relapsing-remitting multiple sclerosis, which can be used to choose between Natalizumab, Dimethyl Fumarate, Glatiramer Acetate, and placebo. We illustrated the extended decision curve analysis methodology using several threshold values combinations for each available treatment. For the examined threshold values, the "treat patients according to the prediction model" strategy performs either better than or close to the one-size-fit-all treatment strategies. However, even small differences may be important in clinical decision-making. As the advantage of the personalized model was not consistent across all thresholds, an improved model may be needed before advocating its applicability for decision-making. This novel extension of decision curve analysis can be applied to NMA based prediction models to evaluate their use to aid treatment decision-making.
翻译:决定曲线分析可用于确定个人化的治疗惠益模型是否会导致更好的临床决策。决定曲线分析方法被描述用来使用单一RCT的数据估算治疗惠益。我们的主要目标是将决定曲线分析方法扩展至有几种治疗选项的假设情况,并用网络元分析(NMA)综合分析(NMA)综合分析(NAMA)分析其影响的证据。我们用从NMA合成的研究中合成的证据来描述预测模型的净效益所需的步骤。我们展示了如何将个人化的适应性与一尺寸全方位的治疗决策战略进行比较,例如“无治疗”或“对所有患者进行特定治疗”战略。我们的主要目的是将决定曲线分析方法扩展至一个合理的临界值范围,以揭示最临床有用的战略。我们用NMA预测模型来估计预测模型重新拉动多度硬度。在Nathalizumab、Dimet Fummer Fumarate、Glatiramer Acetate和Phero之间可以作出选择。我们用这个模型来说明整个决策优势分析的扩展战略,或者用一个更精确的临界值分析方法来评估。在一次评估其重要的诊断模型中,可以用来评估其重要的诊断值,在一次分析中可以用来进行更好的组合分析。在一次诊断分析中,在一次评估之前,在一次分析中可以用来进行一个精确的模型中可以用来评估。</s>