This work tackles the problem of characterizing and understanding the decision boundaries of neural networks with piecewise linear non-linearity activations. We use tropical geometry, a new development in the area of algebraic geometry, to characterize the decision boundaries of a simple network of the form (Affine, ReLU, Affine). Our main finding is that the decision boundaries are a subset of a tropical hypersurface, which is intimately related to a polytope formed by the convex hull of two zonotopes. The generators of these zonotopes are functions of the network parameters. This geometric characterization provides new perspectives to three tasks. (i) We propose a new tropical perspective to the lottery ticket hypothesis, where we view the effect of different initializations on the tropical geometric representation of a network's decision boundaries. (ii) Moreover, we propose new tropical based optimization reformulations that directly influence the decision boundaries of the network for the task of network pruning. (iii) At last, we discuss the reformulation of the generation of adversarial attacks in a tropical sense. We demonstrate that one can construct adversaries in a new tropical setting by perturbing a specific set of decision boundaries by perturbing a set of parameters in the network.
翻译:这项工作解决了神经网络决定界限的特征化和理解问题,以平面线线性非线性激活。我们使用热带几何学,这是代数几何学领域的新发展,以描述形式简单网络(Affine、ReLU、Affine)的决定界限。我们的主要发现是,决定界限是热带超表层的一个子集,它与两个祖骨的锥体壳形成的一个多层关系密切相连。这些祖诺底体的产生者是网络参数的功能。这种几何特征为三种任务提供了新的视角。 (一) 我们对彩票假设提出了一个新的热带视角,我们从中看到了不同初始化对网络决定界限的热带几何表现的影响。 (二) 此外,我们提出了基于热带的新的优化调整,直接影响到网络运行任务的决策界限。 (三)最后,我们讨论了从热带角度重塑对抗性攻击的一代。我们证明,可以通过设定一个特定的热带边界来建立新的网络,通过按每个边界来设定一个新的界限。