项目名称: 氟化物/钙钛矿型氧化物复合基质调控及对稀土荧光淬灭的抑制
项目编号: No.21471050
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 王国凤
作者单位: 黑龙江大学
项目金额: 85万元
中文摘要: 稀土掺杂无机纳米材料因其高光化学稳定性、窄带发射和长荧光寿命等优点,有望成为新一代荧光生物材料,应用于超敏生物检测和药物缓释,其关键是提高材料的荧光量子效率。本项目拟结合氟化物和钙钛矿型氧化物两种基质材料的优点,利用外延生长技术构筑氟化物/钙钛矿型氧化物异质结型复合基质。以期能够借助于钙钛矿型氧化物的特殊结构抑制纳米荧光材料的浓度淬灭效应,调节异质结构材料的局域晶格振动,减小无辐射跃迁损失,提高材料的稳定性和荧光量子效率。进一步借助于表面修饰等手段使纳米异质结构材料具有良好的水溶性和生物相容性,应用于肿瘤细胞高灵敏检测及其抗癌药物靶向传输与缓释,构筑出可应用于医学诊断和治疗的多功能纳米复合材料。通过外延生长控制钙钛矿型稀土氧化物纳米晶的尺寸、形貌、生长位点及厚度,提高荧光检测灵敏度和信噪比,为临床诊断和治疗提供性能优异的功能纳米材料。
中文关键词: 稀土;氟化物;钙钛矿型氧化物;纳米异质结构;生物应用
英文摘要: Rare earth doped inorganic nanomaterial will be a new generation of fluorescent biological materials and have potential applications in ultra sensitive biological detection and drug release due to their high chemical stability, narrow-band emission, long fluorescence lifetime, and so on. The key actor of the applications is the enhancement of the fluorescence quantum efficiency. This project aims to combine the advantages of fluoride and perovskite type oxides, and prepare fluorides/perovskite type oxides nano-heterostructures.It is expected to reduce the concentration quenching effect, control the local lattice vibration, reduce the nonradiative transition, and enhance the stability and quantum efficiency of fluorescence materials. Through surface modification, the rare earth doped fluorides/perovskite type oxides nano-heterostructures with good water solubility and biocompatibility will be used for tumor cells sensitive detection and anticancer drugs targeting transport and release. Multifunctional nanocomposites together with medical diagnosis and treatment will be synthesized. In order to enhance the tumor cell detection sensitivity and signal to noise ratio, the morphology, size, growth site, and compound quantity of rare earth doped fluorides/perovskite type oxides nano-heterostructures will be adjusted by the epitaxial growth method. Functional nanomaterial with excellent performance will be provided for clinical diagnosis and treatment.
英文关键词: Rare-earth;Fluorides;Perovskite-type oxides;Nano-heterostructures;Biological applications