Astrobot swarms are used to capture astronomical signals to generate the map of the observable universe for the purpose of dark energy studies. The convergence of each swarm in the course of its coordination has to surpass a particular threshold to yield a satisfactory map. The current coordination methods do not always reach desired convergence rates. Moreover, these methods are so complicated that one cannot formally verify their results without resource-demanding simulations. Thus, we use support vector machines to train a model which can predict the convergence of a swarm based on the data of previous coordination of that swarm. Given a fixed parity, i.e., the rotation direction of the outer arm of an astrobot, corresponding to a swarm, our algorithm reaches a better predictive performance compared to the state of the art. Additionally, we revise our algorithm to solve a more generalized convergence prediction problem according to which the parities of astrobots may differ. We present the prediction results of a generalized scenario, associated with a 487-astrobot swarm, which are interestingly efficient and collision-free given the excessive complexity of this scenario compared to the constrained one.
翻译:利用天文机器人群群来捕捉天文信号,为暗能量研究的目的绘制可观测宇宙的地图。每个群群群在协调过程中的汇合必须超过某一阈值,才能得出令人满意的地图。目前的协调方法并非总能达到理想的汇合率。此外,这些方法非常复杂,以至于人们无法在不进行资源需求模拟的情况下正式核实其结果。因此,我们使用支持矢量机器来训练一个模型,根据先前对群群群进行协调的数据来预测群群群的汇合。考虑到固定对等,即星体外臂的旋转方向(与群相对应),我们的算法比艺术状态的预测性效果要好得多。此外,我们修改我们的算法,以便解决更加普遍的汇合预测问题,根据这种预测,星体的分布可能不同。我们提出一个普遍假设的预测结果,与487-阿斯托博特群群相联,由于这一假设的复杂程度与受限制的状态相比,这种预测是令人感兴趣的有效和没有碰撞的。