Reservoir Computing (RC) is a type of recursive neural network (RNN), and there can be no doubt that the RC will be more and more widely used for building future prediction models for time-series data, with low training cost, high speed and high computational power. However, research into the mathematical structure of RC neural networks has only recently begun. Bollt (2021) clarified the necessity of the autoregressive (AR) model for gaining the insight into the mathematical structure of RC neural networks, and indicated that the Wold decomposition theorem is the milestone for understanding of these. Keeping this celebrated result in mind, in this paper, we clarify hidden structures of input and recurrent weight matrices in RC neural networks, and show that such structures attain perfect prediction for the AR type of time series data.
翻译:暂无翻译