Our work explores the hardness of $3$SUM instances without certain additive structures, and its applications. As our main technical result, we show that solving $3$SUM on a size-$n$ integer set that avoids solutions to $a+b=c+d$ for $\{a, b\} \ne \{c, d\}$ still requires $n^{2-o(1)}$ time, under the $3$SUM hypothesis. Such sets are called Sidon sets and are well-studied in the field of additive combinatorics. - Combined with previous reductions, this implies that the All-Edges Sparse Triangle problem on $n$-vertex graphs with maximum degree $\sqrt{n}$ and at most $n^{k/2}$ $k$-cycles for every $k \ge 3$ requires $n^{2-o(1)}$ time, under the $3$SUM hypothesis. This can be used to strengthen the previous conditional lower bounds by Abboud, Bringmann, Khoury, and Zamir [STOC'22] of $4$-Cycle Enumeration, Offline Approximate Distance Oracle and Approximate Dynamic Shortest Path. In particular, we show that no algorithm for the $4$-Cycle Enumeration problem on $n$-vertex $m$-edge graphs with $n^{o(1)}$ delays has $O(n^{2-\varepsilon})$ or $O(m^{4/3-\varepsilon})$ pre-processing time for $\varepsilon >0$. We also present a matching upper bound via simple modifications of the known algorithms for $4$-Cycle Detection. - A slight generalization of the main result also extends the result of Dudek, Gawrychowski, and Starikovskaya [STOC'20] on the $3$SUM hardness of nontrivial 3-Variate Linear Degeneracy Testing (3-LDTs): we show $3$SUM hardness for all nontrivial 4-LDTs. The proof of our main technical result combines a wide range of tools: Balog-Szemer{\'e}di-Gowers theorem, sparse convolution algorithm, and a new almost-linear hash function with almost $3$-universal guarantee for integers that do not have small-coefficient linear relations.
翻译:我们的工作探讨了不包含特定加性结构的 $3$SUM 实例的困难程度及其应用。作为我们的主要技术结果,我们证明了解决整数集的 $3$SUM 问题,该集避免满足 $a+b=c+d$ ($\{a,b\}\ne\{c,d\}$) 的解仍需要 $n^{2-o(1)}$ 的时间,在 $3$SUM 假设下。这样的整数集被称为西东(Sidon)集,在加性组合学领域得到了广泛研究。结合之前的约简,这意味着在 $n$ 个顶点的图中,最大度数为 $\sqrt{n}$,同时每个 $k\geqslant 3$ 的 $k$ 个环的 All-Edges Sparse Triangle 问题仍然需要 $n^{2-o(1)}$ 的时间,在 $3$SUM 假设下。这可用于加强之前由 Abboud、Bringmann、Khoury 和 Zamir[STOC'22]提出的三项有条件下限:$4$-Cycle Enumeration、Offline Approximate Distance Oracle 和 Approximate Dynamic Shortest Path。特别地,我们展示了对于 $n$ 个顶点和 $m$ 条边的图,具有 $n^{o(1)}$ 个延迟的 $4$-Cycle Enumeration 问题的算法,没有 $O(n^{2-\varepsilon})$ 或 $O(m^{4/3-\varepsilon})$ 的预处理时间,其中 $\varepsilon >0$。我们还通过简单修改已知的 $4$-Cycle Detection 算法给出了匹配的上界。我们的主要技术结果的证明结合了广泛的工具:巴洛格-谢默迪-高尔斯定理,稀疏卷积算法和一种新的几乎线性哈希函数,对于没有小系数线性关系的整数,具有几乎 $3$-通用保证。此外,我们的主要结果的轻微推广还扩展了 Dudek、Gawrychowski 和 Starikovskaya[STOC'20] 对于非平凡三元线性退化测试(3-LDTs)的 $3$SUM 难度结果:我们展示了所有非平凡 $4$-LDTs 的 $3$SUM 难度。