项目名称: 分数阶薛定谔方程的数值方法研究
项目编号: No.11526088
项目类型: 专项基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 唐波
作者单位: 湖北文理学院
项目金额: 3万元
中文摘要: Schrodinger方程作为量子力学里的基本方程,其解的性质的研究一直被人们所关注。目前较少学者对分数阶Schrodinger的数值解进行研究。在本项目中,我们针对时间分数阶Schrodinger方程的初边值问题进行研究。对时间导数利用有限差分进行离散,空间离散一维采用高阶紧致差分、二维三维则采用高阶紧致ADI或有限元来研究分数阶Schrodinger方程,给出若干稳定性好、适应性强、收敛的高精度格式。并对格式进行详尽的误差估计和稳定性分析,以保证我们的数值格式是稳定的,并且具有良好的收敛性,同时对解进行长时间数值模拟,来研究解的动力学行为,验证算法进行长时间数值模拟也是稳定的。上述问题的研究不仅涉及到理论物理、量子力学等重要的应用领域,同时也促进了偏微分方程理论和其它数学分支的发展,因而无论从理论上还是从应用上都是十分重要的。
中文关键词: 分数阶薛定谔方程;误差估计;收敛性与稳定性;;
英文摘要: Schrodinger equation as the fundamental equation of quantum mechanics, the properties of the solutions have always been concerned by many scholars. Few researchers studied the numercial solutions of fractional Schrodinger equation. In this program, we study time-fractional Schrodinger equation. The time derivative is discretized by the finite difference method , while the spatial is discretized by the high-order compact difference method (one-dimension), high-order compact ADI or finite element (two-dimension and three-dimension). And we will give some stability, robustness and high convergence precision numercial methods. We will give the error estimates and stability analysis of the numerical methods, to ensure that our numerical schemes are stable and have good convergence. At the same time, long-time numerical simulations will be given to study the dynamic behavior of the solution, and then verify the long time stabilities of the algorithms. The above problems have not only been widely used to theoretical physics, quantum mechanics and so on, but also enrich the theory of partial differential equation and other mathematical branch, so the subject is very importmant in the theory and the application.
英文关键词: Fractional Schr?dinger Equation;Error Estimation;Convergence and Stability;;