We introduce a formalization and benchmark for the unsupervised anomaly detection task in the distribution-shift scenario. Our work builds upon the iWildCam dataset, and, to the best of our knowledge, we are the first to propose such an approach for visual data. We empirically validate that environment-aware methods perform better in such cases when compared with the basic Empirical Risk Minimization (ERM). We next propose an extension for generating positive samples for contrastive methods that considers the environment labels when training, improving the ERM baseline score by 8.7%.
翻译:我们引入了一种正规化和基准,用于在分布式变换情景中未受监督的异常现象检测任务。我们的工作以iWildCam数据集为基础,并且据我们所知,我们是第一个提出这种视觉数据方法的人。我们从经验上证实,在这种情况下,环境意识方法比基本经验风险最小化(ERM)效果更好。我们接下来建议扩大一个范围,为对比性方法生成正面样本,这些方法在培训时考虑环境标签,将机构风险管理基准分数提高8.7%。