Few-shot font generation (FFG) aims to preserve the underlying global structure of the original character while generating target fonts by referring to a few samples. It has been applied to font library creation, a personalized signature, and other scenarios. Existing FFG methods explicitly disentangle content and style of reference glyphs universally or component-wisely. However, they ignore the difference between glyphs in different styles and the similarity of glyphs in the same style, which results in artifacts such as local distortions and style inconsistency. To address this issue, we propose a novel font generation approach by learning the Difference between different styles and the Similarity of the same style (DS-Font). We introduce contrastive learning to consider the positive and negative relationship between styles. Specifically, we propose a multi-layer style projector for style encoding and realize a distinctive style representation via our proposed Cluster-level Contrastive Style (CCS) loss. In addition, we design a multi-task patch discriminator, which comprehensively considers different areas of the image and ensures that each style can be distinguished independently. We conduct qualitative and quantitative evaluations comprehensively to demonstrate that our approach achieves significantly better results than state-of-the-art methods.


翻译:少见的字体生成( FFG) 旨在保存原始字符的基本全球结构, 同时通过引用一些样本生成目标字体。 它已被应用于字体库创建、 个性化签名和其他情景。 现有的 FFG 方法将内容和参考样式格的样式普遍或部分性明确分解。 但是, 它们忽略了不同风格的格字和相同风格的格字的相似性之间的差异, 导致本地扭曲和风格不一致等艺术品。 为了解决这个问题, 我们建议了一种新型字体生成方法, 学习不同风格和相同风格( DS- Font)相似性之间的差异。 我们引入对比性学习, 以考虑样式之间的正负关系。 具体地说, 我们提出一个多层风格投影仪, 通过我们提议的分组级别对比风格损失实现独特的风格代表。 此外, 我们设计了一个多层拼图式区分器, 全面考虑不同的图像领域, 并确保每个样式能够更独立地区分。 我们进行质和定量评估, 全面展示我们的方法, 而不是全面展示我们实现的状态。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
12+阅读 · 2020年8月3日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员