Few-shot font generation (FFG) aims to preserve the underlying global structure of the original character while generating target fonts by referring to a few samples. It has been applied to font library creation, a personalized signature, and other scenarios. Existing FFG methods explicitly disentangle content and style of reference glyphs universally or component-wisely. However, they ignore the difference between glyphs in different styles and the similarity of glyphs in the same style, which results in artifacts such as local distortions and style inconsistency. To address this issue, we propose a novel font generation approach by learning the Difference between different styles and the Similarity of the same style (DS-Font). We introduce contrastive learning to consider the positive and negative relationship between styles. Specifically, we propose a multi-layer style projector for style encoding and realize a distinctive style representation via our proposed Cluster-level Contrastive Style (CCS) loss. In addition, we design a multi-task patch discriminator, which comprehensively considers different areas of the image and ensures that each style can be distinguished independently. We conduct qualitative and quantitative evaluations comprehensively to demonstrate that our approach achieves significantly better results than state-of-the-art methods.
翻译:少见的字体生成( FFG) 旨在保存原始字符的基本全球结构, 同时通过引用一些样本生成目标字体。 它已被应用于字体库创建、 个性化签名和其他情景。 现有的 FFG 方法将内容和参考样式格的样式普遍或部分性明确分解。 但是, 它们忽略了不同风格的格字和相同风格的格字的相似性之间的差异, 导致本地扭曲和风格不一致等艺术品。 为了解决这个问题, 我们建议了一种新型字体生成方法, 学习不同风格和相同风格( DS- Font)相似性之间的差异。 我们引入对比性学习, 以考虑样式之间的正负关系。 具体地说, 我们提出一个多层风格投影仪, 通过我们提议的分组级别对比风格损失实现独特的风格代表。 此外, 我们设计了一个多层拼图式区分器, 全面考虑不同的图像领域, 并确保每个样式能够更独立地区分。 我们进行质和定量评估, 全面展示我们的方法, 而不是全面展示我们实现的状态。