Computational fluid dynamics (CFD) is a valuable tool for personalised, non-invasive evaluation of hemodynamics in arteries, but its complexity and time-consuming nature prohibit large-scale use in practice. Recently, the use of deep learning for rapid estimation of CFD parameters like wall shear stress (WSS) on surface meshes has been investigated. However, existing approaches typically depend on a hand-crafted re-parametrisation of the surface mesh to match convolutional neural network architectures. In this work, we propose to instead use mesh convolutional neural networks that directly operate on the same finite-element surface mesh as used in CFD. We train and evaluate our method on two datasets of synthetic coronary artery models with and without bifurcation, using a ground truth obtained from CFD simulation. We show that our flexible deep learning model can accurately predict 3D WSS vectors on this surface mesh. Our method processes new meshes in less than 5 [s], consistently achieves a normalised mean absolute error of $\leq$ 1.6 [%], and peaks at 90.5 [%] median approximation accuracy over the held-out test set, comparing favourably to previously published work. This demonstrates the feasibility of CFD surrogate modelling using mesh convolutional neural networks for hemodynamic parameter estimation in artery models.
翻译:对动脉中的心血管动力学进行个性化、非侵入性评估的宝贵工具(CFD)是动脉中热源动力学进行个人化、非侵入性评估的宝贵工具,但其复杂性和耗时性性质使得无法在实际中大规模使用。最近,对利用深度学习快速估计CFD参数,如地表草皮上壁剪切压力(WSS)等CFD参数进行了调查。然而,现有方法通常依赖于人工重新校正的表层网膜网目,以匹配神经神经网络结构。在这项工作中,我们提议使用直接在CFD中使用的同一定额表面表面表面线动脉动模型进行运行的网状神经神经神经网络。我们用CFD模拟获得的地面真相来用合成心动动动动动动动动动动动动动动脉动模型的两套数据集来培训和评价我们的方法。我们灵活的深层学习模型可以准确地预测表表面神经系统向矢动向的3D WSS矢动矢动脉动器。我们的方法在不到5个的模型中,在CFD(1.6.%)已出版的逻辑上,在CFDFDMIL5中持续实现一个正常绝对误差中,在CFD(C-GILIL)测试的中间值中,在90(C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C