The privacy leakage of the model about the training data can be bounded in the differential privacy mechanism. However, for meaningful privacy parameters, a differentially private model degrades the utility drastically when the model comprises a large number of trainable parameters. In this paper, we propose an algorithm \emph{Gradient Embedding Perturbation (GEP)} towards training differentially private deep models with decent accuracy. Specifically, in each gradient descent step, GEP first projects individual private gradient into a non-sensitive anchor subspace, producing a low-dimensional gradient embedding and a small-norm residual gradient. Then, GEP perturbs the low-dimensional embedding and the residual gradient separately according to the privacy budget. Such a decomposition permits a small perturbation variance, which greatly helps to break the dimensional barrier of private learning. With GEP, we achieve decent accuracy with reasonable computational cost and modest privacy guarantee for deep models. Especially, with privacy bound $\epsilon=8$, we achieve $74.9\%$ test accuracy on CIFAR10 and $95.1\%$ test accuracy on SVHN, significantly improving over existing results.
翻译:有关培训数据模型的隐私渗漏可以在不同的隐私机制中加以限制。但是,对于有意义的隐私参数而言,如果模型包含大量可训练参数,则有差别的私人模型会急剧地降低效用。在本文中,我们提议了一种算法 emph{GEP},以便以适当的准确性对不同的私人深层模型进行培训。具体地说,在每一个梯度下降步骤中,GEP首先将单个私人梯度投射到一个不敏感的锚定子子空间,产生一个低维梯度嵌入和一个小温度残余梯度。然后,GEP根据隐私预算分别对低维嵌入和残余梯度进行渗透。这种分解使小的扰动差异大有助于打破私人学习的立面屏障。与GEP一起,我们以合理的计算成本和低度的深度模型隐私保障实现了相当的准确性。特别是,以隐私约束$\epslon=8美元,我们实现了CFAR10的74.9 美元测试精度和SVHN的95.1 美元测试精度大幅改进现有结果。