Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.


翻译:联邦学习表明,在铺平最后一英里人工智能方面,联邦学习是一个很有希望的办法,因为它在大规模机器学习中具有解决数据孤立问题的巨大潜力。特别是,考虑到实用边缘计算机系统中的异质性,以非同步边球协作为基础的联合学习能够通过大幅降低分流效应,进一步提高学习效率。尽管没有原始数据共享,开放的架构和无同步联邦学习的广泛协作仍然给一些恶意参与者提供大量机会来推断其他缔约方的培训数据,从而导致对隐私的严重关切。为了实现严格的隐私保障,我们调查如何确保无同步边边缘协作联合学习,并采用不同的隐私,侧重于不同隐私对亚远离子体融合模式的影响。形式上,我们首先分析DP下亚远离子球模型的趋同,并提议一个多阶段可调整的私人算法(MAPA),以便通过动态地调整噪音尺度和学习率来改进模型的利弊端。我们通过广泛的模拟和真实的精确度实验,大大地改进了我们的精确度。

3
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
162+阅读 · 2020年1月16日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
162+阅读 · 2020年1月16日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员